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Introduction

Maintaining landscape connectivity is essential for 
long-term population persistence (Taylor et  al. 1993), 
especially in the face of  rapid climate change (Cobben 
et al. 2012). Functional connectivity describes how indi-
viduals respond to the distribution of  resources on the 
landscape (structural connectivity) as well as their 
ability to negotiate and disperse through the landscape 

(Stevens et al. 2006). Climate change has the potential 
to alter both structural and functional connectivity. 
Furthermore, complex interactions among multiple fac-
tors may produce highly individualistic responses to 
climate change across species (Rapacciuolo et al. 2014) 
and regions (Rowe et al. 2015). Predicting how climate 
change will affect populations, and in turn species per-
sistence, therefore may require understanding the fac-
tors influencing both habitat occupancy and functional 
connectivity, as well as their interactions and the degree 
to which such factors vary across landscapes (e.g., Shirk 
et al. 2014). This is particularly true for species that are 
restricted to naturally fragmented habitats resembling 
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metapopulations, such as pond-breeding amphibians 
(Murphy et  al. 2010), and species found primarily on 
mountaintops (Epps et  al. 2004, Walker et  al. 2007) 
where suitable land area is projected to decrease as cli-
mates warm, reducing population size and increasing 
isolation (Guralnick 2007).

Although the importance of  functional connectivity 
for persistence of  fragmented populations is well under-
stood (Tischendorf  and Fahring 2000), most efforts to 
forecast impacts of  climate on species distributions have 
focused primarily on climate niche (e.g., Huntley et al. 
1995, Kearney and Porter 2004,  Calkins et  al. 2012). 
A potential weakness of  such species distribution mod-
els is that they ignore important ecological processes 
such as functional connectivity (Pearson and Dawson 
2003, Guisan and Thuiller 2005). Effective forecasting 
will require consideration of  the relative importance of 
climate and connectivity, and the potential interplay 
between these factors, in shaping a species’ distribution. 
This is particularly true for dispersal-limited species 
exhibiting a strong relationship between climate and 
population persistence, such as the American pika 
(Ochotona princeps) (Hafner 1993, Beever et  al. 2010, 
2013, Erb et al. 2011, Calkins et al. 2012).

For species with naturally fragmented distributions 
or that exist in metapopulations, predictions of popu-
lation persistence based on within-patch characteristics 
alone ignore the possibility that loss of between-patch 
connectivity could lead to metapopulation collapse 
and ultimately local extinction. Alternately, a highly 
interconnected metapopulation could be more resilient 
to environmental change, particularly in heterogene-
ous environments (Hanski and Gilpin 1997). Thus, 
accurate characterization of functional connectivity 
among patches is needed. In the simplest metapopula-
tion model, the probability a habitat patch is occupied 
is a function of the rates of patch extinction and colo-
nization, which in turn are a function of patch size as 
well distance to nearby patches, respectively (Levins 
1969). However, in practice, the probability of occu-
pancy is usually patch specific (Fleishman et al. 2002, 
Prugh et al. 2008). When habitat configuration is con-
sidered, distance between habitat patches is often 
measured as straight-line (Euclidean) distance (e.g., 
Ficetola and De Bernardi 2004, Franken and Hik 
2004); alternatively, patch isolation can be character-
ized more effectively as a function of landscape resist-
ance, which takes into account how organisms move 
through heterogeneous landscapes with varying effi-
ciency (McRae 2006). The latter metric may therefore 
be critical for our understanding of functional con-
nectivity and, in turn, metapopulation persistence in 
a changing environment. A variety of methods for 
estimating landscape resistance have been developed 
(Spear et al. 2015). However, employing such models 
in conservation may be complicated by variation in 
landscape resistance among landscapes, although this 
has rarely been evaluated.

American pikas exemplify the need to assess func-
tional connectivity for conservation planning: they 
exhibit fine-scale metapopulation dynamics and their 
distribution is strongly influenced by climate (Hafner 
1993, Smith et  al. 1997, Moilanen et  al. 1998, Smith 
and Nagy 2015), but in ways that vary among habitats 
and regions (Jeffress et al. 2013, Schwalm et al. 2016). 
Their persistence at the patch scale is partly determined 
by patch size, which affects extinction rates, as well as 
total habitat area near the focal patch and distance to 
nearby patches, which affect colonization rates (Beever 
et al. 2003, 2010, 2011, 2013, Stewart and Wright 2012, 
Millar et al. 2013, Stewart et al. 2015). The specialized 
rocky habitats on which American pikas rely provide 
thermal buffering that enables persistence in seemingly 
inhospitable regions (Millar et al. 2013). Yet, pika dis-
persal among habitat patches is poorly understood and 
likely habitat dependent. Smith (1974b) proposed that 
distances greater than a few hundred meters in hot cli-
mates may pose a barrier to dispersal for American 
pikas, whereas they may be able to traverse multiple 
kilometers through more hospitable areas. 
Understanding the degree to which dispersal patterns 
and behaviors and thus functional connectivity vary 
among landscapes is likely to be a key component of 
forecasting influences of environmental change on per-
sistence of pikas as well as for other species with frag-
mented distributions.

In this study, we used a landscape genetics approach 
to identify factors influencing functional connectivity 
for the American pika by characterizing landscape 
connectivity and gene flow. We employed metareplica-
tion (i.e., replicated studies conducted in different loca-
tions, seasons, or spatial scales; Johnson 2002) by 
applying the same study design to eight federally man-
aged study sites across the western United States. Such 
replication allowed us to evaluate the impact that 
landscape heterogeneity and configuration could have 
on limiting factors for dispersal (e.g., Short Bull et al. 
2011, Cushman et  al. 2011, 2013a) and is critical for 
broadening the scope of inference (Shirk et al. 2014). 
We compared the degree of within-site gene flow 
among the eight study sites by quantifying gene flow 
threshold, which reflects the distance genetic material 
can be transported through dispersal and reproduction 
in successive generations (see Methods: Network 
models). We then used empirically derived landscape 
resistance models and gene flow threshold estimates to 
inform a patch-based network analysis using a graph-
theoretic approach aimed at determining the current 
degree of fragmentation within each site as well as 
identifying patches and linkages with high importance 
to connectivity at the site level (e.g., Creech et al. 2014). 
Through these multiple integrated approaches, we iden-
tify landscape variables that either promote or inhibit 
dispersal, test whether dispersal distances vary among 
landscapes as a function of habitat configuration, 
assess current fragmentation as a baseline for future 
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research, and identify locations within study areas 
that  may be important for maintaining functional 
connectivity.

Materials and Methods

Study species

American pikas are small lagomorphs (121–176 g) typi-
cally found at high elevations within western North 
America (Smith and Weston 1990). They are restricted 
to fractured rock habitats, such as talus slopes and lava 
flows, which provide refuge from predators and thermal 
buffering (Smith 1974b, Smith and Weston 1990, Millar 
et al. 2014b). American pikas are heat sensitive and can-
not tolerate prolonged exposure to high temperatures 
(Smith 1974d), but may persist at lower elevations and 
in hotter climates if  there are suitable microclimatic refu-
gia (Millar and Westfall 2010, Rodhouse et  al. 2010, 
Collins and Bauman 2012, Millar et al. 2013, Varner and 
Dearing 2014). Estimates of their maximum dispersal 
ability range from a few hundred meters (Smith 1974d) 
to 20 km (Hafner and Sullivan 1995), but most estimates 
suggest there is little or no gene flow among populations 
separated by distances greater than 10 km (Peacock and 
Smith 1997, Henry et al. 2012). American pikas are con-
sidered a sentinel of climate warming (Hafner 1993), as 
there have been numerous apparent recent extirpations 
reported from relatively hot, dry regions (Beever et  al. 
2011) and future predictions suggest widespread losses 
in the species’ distribution particularly in, but not limited 
to, low elevations (Calkins et al. 2012, Stewart et al. 2015).

Study sites

We analyzed data from eight study sites that reflect 
much of the environmental variation experienced by 
pikas within the western United States: Crater Lake 
National Park, Oregon (CRLA); Craters of the Moon 
National Monument, Idaho (CRMO); Great Sand Dunes 
National Park, Colorado (GRSA); Grand Teton National 
Park, Wyoming (GRTE); Lassen Volcanic National Park, 
California (LAVO); Hart National Antelope Refuge, 
Oregon (HMAR); Rocky Mountain National Park, 
Colorado (ROMO); and Sheldon National Wildlife 
Refuge, Nevada (SHWR; Fig. 1, Appendix S1). Mean 
elevations within these study areas ranged from ~1700 m 
(CRMO and HMAR) to ~3150 m (GRSA, Table 1). In 
addition to differences in elevation range, these sites were 
selected to represent differences in landform type (Table 
1), landscape configuration, amount of potential pika 
habitat, and dominant vegetation type.

Sampling design

We collected fecal samples for genetic analyses 
through a combination of random, targeted, and oppor-
tunistic sampling methods, with the goal of  sampling 
the greatest extent possible within each site. Random 
sampling coincided with occupancy surveys conducted 
under a generalized, random, stratified grid sampling 
scheme within pika habitat (Stevens and Olsen 2004, 
Jeffress et  al. 2011). For a detailed description of this 
sampling scheme and identification of potential habitat, 
see Jeffress et  al. (2013). Targeted sampling involved 
exhaustively searching an occupied area. Opportunistic 

Fig.  1.  Map of the western United States showing elevation in grayscale (dark  for  low elevation, light  for high elevation), 
predicted American pika (Ochotona princeps) distribution in gray stippling (redrawn from Hafner and Sullivan 1995), and study 
sites in thick black outline with hashed shading. See Materials and Methods: Study sites for full site names.
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sampling occurred in transit between survey points. See 
Castillo et al. (2014) for a detailed description of genetic 
sampling methods. We collected samples between June 
and September 2010–2012. We restricted sampling to 
fresh fecal pellets containing green plant material to 
ensure they were deposited that year (Nichols 2010) and 
discrete piles of  pellets (i.e., not touching older pellets) 
to avoid representation of multiple pikas within a genetic 
sample.

DNA extraction and genotyping

We extracted genomic DNA from fecal samples using 
a modified AquaGenomic DNA extraction protocol 
(MultiTarget Pharmaceuticals, Salt Lake City, Utah, 
USA). We genotyped individuals at 24 microsatellite loci 
in four multiplex polymerase chain reactions (PCR) using 
a Qiagen Multiplex PCR kit (Qiagen, Valencia, California, 
USA). Detailed PCR protocol, primer sequences, and 
methods for calling and screening microsatellite geno-
types are provided in Appendix S3. We  screened for 
duplicate individuals first by using Cervus 3.0 (Kalinowski 
et  al. 2007) to identify matching genotypes, allowing 
fuzzy matching with up to six mismatching loci. We then 
used Gimlet (Valiere 2002) to calculate the probability 
of identity for a full-sibling relationship (P(ID)among 
siblings) (Waits et  al. 2001) for each of the matching 
genotypes identified in Cervus. We identified duplicate 
individuals if P(ID)among siblings  <  10−3 (Epps et  al. 
2005) and removed all but one genotype for each of the 
sets of duplicates. We tested for linkage disequilibrium 
and significant deviations from expected Hardy-Weinberg 
genotype frequencies using Genepop (Raymond and 
Rousset 1995). Finally, we removed individuals with 
incomplete genotypes from further analysis.

Landscape configuration metrics

We chose landscape configuration metrics that 
reflected habitat area and fragmentation, which were 

highly correlated with patch occupancy in previous 
research (Beever et  al. 2003, 2010, 2011, 2013, Stewart 
and Wright 2012, Millar et  al. 2013). We calculated 
landscape configuration metrics for each study site using 
Fragstats v. 4.2 (McGarigal et  al. 2002). Using a land 
cover raster modified from the National Land Cover 
Dataset (NLCD 2006 Land Cover, U.S. Geological 
Survey) and potential pika habitat maps (e.g., Jeffress 
et  al. 2013), we quantified the percent land cover 
(PLAND) as well as a modified Simpson’s evenness 
index (MSIEI) using the following cover classes: pika 
habitat, forested, shrub/scrub, open, and water (lakes 
and major rivers only). Simpson’s evenness index ranges 
from 0, representing no diversity (i.e., a single large 
patch) to 1, representing perfectly even distribution of 
area among patch types. Next we calculated six pika 
habitat configuration metrics: area-weighted mean patch 
area (AREA); area-weighted mean radius of gyration 
(GYRATE), a measure of patch extent where elongated 
(i.e., linear) patches have a greater radius than round 
patches of similar area; mean proximity index (PROX), 
the degree of patch isolation and fragmentation where 
a value of 0 indicates complete isolation; Euclidean near-
est neighbor (ENN), the mean distance between each 
patch and its nearest neighbor; and patch clumpiness 
index (CLUMPY), which ranges from −1 for maximally 
dispersed to 1 for maximally clumped.

Landscape resistance model optimization

We evaluated the hypotheses that exposure to rela-
tively high temperatures, predation risk, and physical 
limitations (related to body size and locomotion) pose 
resistance to movement, and therefore gene flow, in 
American pikas. To accomplish this, we modeled resist-
ance as a function of five landscape variables: elevation 
and aspect as climate-related variables; topographic com-
plexity and water features as physical impediments; and 
land cover type as a metric of physical and climate-related 

Table 1.  Study site characteristics for each site including biogeographic region, dominant rock landform type of American pika 
(Ochotona princeps) habitat, and elevation ranges for the whole study area as well as only areas characterized as potential pika 
habitat. 

Elevation (m) Pika habitat elevation (m)

Study site Region Rock Min. Max. Mean SD Min. Max. Mean SD 

CRLA Cascades 1 1119 2722 1792 191 1409 2709 2068 190
CRMO N Rockies 2 1606 2467 1723 128 1616 1984 1697 47
GRSA S Rockies 1 2389 4361 3157 417 2627 4080 3421 336
GRTE N Rockies 1 1872 4201 2427 389 1932 3739 2925 255
HMAR Great Basin 1, 3 1358 2443 1697 288 1378 2374 1849 223
LAVO Cascades 1, 2 1340 3187 1948 244 1390 3156 2096 278
ROMO S Rockies 1 2223 4347 3060 377 2394 4347 3520 215
SHWR Great Basin 1, 3 1357 2222 1869 101 1659 2221 1916 91

Notes: See Materials and Methods: Study sites for full names of sites, see Fig. 1 for map of study sites. Rocky Mountains were 
divided into northern (N) and southern (S) portions. Rock (landform) types include (1) talus, (2) lava flow, and (3) inselbergs 
(isolated, rocky exposures).
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limitations. We created landscape resistance surfaces for 
a range of model parameters influencing the magnitude 
of resistance (determined by Rmax) and shape of the rela-
tionship (governed by a function of x, see Appendix S4 
for a detailed description) for each landscape variable 
using ArcGIS 10.0 (ESRI, Redlands, California, USA) 
for a total of 350+ univariate resistance model hypotheses 
per study site (Castillo et al. 2014). Each resistance sur-
face raster consisted of ~10-m pixels (1/3 arc second). In 
addition to the landscape resistance hypotheses, we mod-
eled the isolation by distance (IBD) hypothesis that geo-
graphic distance between individuals alone influenced 
genetic distance, by creating a raster of constant value 
equal to one. We used Circuitscape v.3.5.4 (McRae 2006) 
to calculate cumulative resistance between points repre-
senting each genotyped individual. This resulted in a 
matrix of pairwise resistance distances for each landscape 
resistance hypothesis as well as the IBD hypothesis.

We evaluated landscape resistance hypotheses by 
assessing the correlation between a genetic distance 
matrix and resistance distance matrix using partial 
Mantel tests in a reciprocal causal modeling framework 
(Shirk et al. 2010, Cushman et al. 2013b, Castillo et al. 
2014). While the potential for landscape genetics to 
address questions of functional connectivity is well rec-
ognized, the appropriateness of various approaches, par-
ticularly the statistical analyses used, is still a topic of 
debate (Balkenhol et al. 2009). The suitability of Mantel 
and partial Mantel tests has been questioned (Guillot 
and Rousset 2011, 2013) and repeatedly evaluated 
(Cushman et al. 2013b, Graves et al. 2013, Castillo et al. 
2014). Mantel tests for the correlation between two dis-
tance matrices (genetic distance and geographic distance, 
typically) have been shown to result in high Type I error, 
particularly in highly similar or correlated landscapes 
(Cushman et  al. 2013b). In a previous study (Castillo 
et al. 2014), we evaluated the use of partial Mantel tests 
in a reciprocal causal modeling framework proposed by 
Cushman et  al. (2013b). In that improved framework, 
we considered the relative support (see next paragraph) 
for each model in pairwise competition with every other 
model in the candidate set, rather than P values as our 
criterion for support, in addition to stringent causal mod-
eling criteria. Castillo et al. (2014) demonstrated through 
individual-based, spatially explicit population genetic 
simulations in CDPOP (Landguth and Cushman 2010) 
that this method successfully identified the underlying 
landscape variables influencing gene flow, although accu-
rately identifying the magnitude of resistance for the 
individual landscape variables was more difficult.

We determined genetic distance among individuals 
using a principal components analysis to calculate the 
pairwise genetic distance matrix (Shirk et al. 2010, Castillo 
et al. 2014) in R 2.13.1 (R Development Core Team 2011). 
We evaluated each of our univariate landscape resistance 
hypotheses using the partial Mantel test for correlation 
between genetic distance (GenD) and resistance distance 
(RD), after partialling out (i.e., controlling for the effect 

of) the IBD matrix, with the Ecodist package in R. For 
each model with a significant correlation, we calculated 
the relative support (RS; Cushman et al. 2013b, Castillo 
et al. 2014) as compared to each other significant model, 
for a given landscape variable. Relative support of resist-
ance hypothesis 1 as compared to resistance hypothesis 
2 is defined as RS1|2  =  (GenD  ∼  RD1|RD2)  −  (GenD 
∼ RD2|RD1), where (GenD ∼ RD1|RD2) represents the 
partial Mantel correlation between GenD and RD1 after 
partialling out RD2. We identified the best model 
hypothesis as the model in which RS  >  0 for every 
comparison.

Once we identified the best univariate model for each 
landscape variable, we built multivariate resistance sur-
faces by creating rasters equal to the sum of the univari-
ate model rasters for each landscape variable. We started 
with an additive model representing the sum of the best 
models for all landscape variables that had a significant 
correlation with genetic distance after partialling out 
IBD. We varied the model parameters for one variable, 
representing a range around the optimum univariate 
parameters, while holding the other parameters constant. 
As with the univariate optimization, the best supported 
multivariate model had positive RS in every comparison. 
We repeated this optimization process for each land-
scape variable until the model parameters stabilized 
(Castillo et al. 2014). In order for a multivariate model 
to be accepted, it had to pass two reciprocal causal mod-
eling criteria: (1) the partial Mantel test GenD ∼ RD|IBD 
must be significant (P < 0.05), and (2) GenD ∼ IBD|RD 
must be nonsignificant (P > 0.05). Additionally, the two 
causal modeling criteria must also be met for the mul-
tivariate model and any reduced version of that model 
(Castillo et al. 2014).

We did not evaluate either panmixia or isolation by 
barrier hypotheses explicitly in our model selection pro-
cess. Pikas establish a territory which they defend for 
their entire lives and mate with their surrounding neigh-
bors (Smith and Weston 1990), therefore panmixia is not 
a plausible hypothesis at the spatial scale of our analyses 
(i.e., tens of kilometers). Two additional lines of evidence 
support rejection of the panmixia hypothesis: (1) IBD 
was significant in each study site (results not shown), but 
never performed better than all competing landscape 
resistance hypotheses, and (2) the observed gene flow 
thresholds were small (≤4.5  km, see Results) compared 
to the spatial extent of our analyses, suggesting restricted 
gene flow as opposed to panmixia. We did not identify 
any likely strong geographic barriers prior to the analysis; 
rather, we incorporated discrete linear features such as 
streams and roads, as well as less discrete features such 
as ridgelines into our landscape resistance hypotheses in 
order to test whether such features might resist gene flow.

Network models

We constructed network models to compare 
fragmentation across study sites as well as identify which 
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portions of the networks are important for maintaining 
connectivity (Creech et  al. 2014, Galpern et  al. 2011). 
We evaluated habitat patch connectivity within each 
study site using a graph-theoretic approach implemented 
with the igraph package in R (Csardi and Nepusz 2006). 
Network models consist of nodes (also called vertices) 
and edges connecting those nodes. Here, nodes 
represented a single habitat patch and edges represented 
distance between patch boundaries, expressed either as 
resistance distance or Euclidean distance. Initially, 
networks included all patches (nodes) and all edges. 
However, so that our model best reflected current 
conditions, we pruned (i.e., removed from the network) 
nodes and edges based on site-specific models of 
occupancy and gene flow, respectively, as follows. Pika 
habitat maps used in this study included all cover types 
considered potential pika habitat (e.g., talus and lava), 
regardless of whether pikas were known to occur there. 
However, not all rocky habitat is equally suitable for 
pikas (Jeffress et  al. 2013, Millar and Westfall 2010). 
Therefore, in order to more accurately reflect available 
pika habitat, we pruned patches that were predicted to 
have <40% probability of occupancy based on site-
specific models developed from occupancy surveys 
(Jeffress et al. 2013, Schwalm et al. 2016). That threshold 
was chosen because 99% of occupied sites occurred in 
patches with >40% probability of occupancy (Schwalm 
et  al. 2016). We did not have predictive occupancy 
models for HMAR or SHWR. Instead, we pruned the 
HMAR network based on the observation that no pika 
sign (fresh or old) was observed on the west-facing slope 
of the Hart Mountain plateau in any surveys (Collins 
and Bauman 2012, J. A. Castillo et al., unpublished data). 
We did not prune nodes for SHWR.

We pruned edges representing a distance greater than 
the estimated maximum dispersal distance at each site. 
Actual dispersal distance is extremely difficult to deter-
mine from genetic data alone (Pinsky et al. 2010), there-
fore a gene flow threshold is sometimes used as a proxy 
for effective dispersal distance (Waser and Elliott 1991, 
Shirk and Cushman 2011). However, gene flow thresh-
old reflects the extent of gene flow through multiple 
generations and therefore is expected to be greater than 
actual dispersal distance in most cases (Shirk and 
Cushman 2014). Using a Mantel correlogram approach 
in the Ecodist package in R, we identified the gene flow 
threshold in each park as the largest distance interval 
with a positive, significant correlation with genetic dis-
tance that did not follow a distance interval with a nega-
tive or nonsignificant correlation (Shirk and Cushman 
2011). We calculated this metric for both geographic 
(Euclidean) distance and resistance distance. We used 
the estimate for gene flow threshold based on resistance 
distance between individuals as our initial dispersal dis-
tance threshold for considering two patches as connected 
in each network. Additionally, for all study sites, we 
pruned edges >4500  m from the network based on 
(1)  observation that long-distance dispersal (>2  km) is 

rare (Smith 1974a, Smith and Ivins 1983, Peacock 1997, 
Peacock and Smith 1997), and (2) the largest observed 
gene flow threshold based on geographic distance in this 
study was 4500 m (see Results). We used this threshold 
to construct the networks based on the reasonable 
assumption that patches separated by greater distances 
are extremely unlikely to exchange individuals. However, 
multiple factors other than distance/resistance contrib-
ute to functional connectivity, such as population size 
and frequency of dispersal between patches. Therefore 
we assumed that network edges reflect the potential for 
patches to be connected, rather than the actual degree 
of connectivity between patches.

From this final network model in each site, we calcu-
lated number of clusters (connected components of the 
graph) and mean percent of connected patches. Mean 
percent of connected patches (MPCP) was calculated by 
identifying the number of patches to which a given patch 
was connected, dividing by the total number of patches 
in the network, then averaging this value across all 
patches in the network. These two metrics describe the 
degree of fragmentation within a site based on whether 
patches are likely to be connected. We also calculated 
betweenness for each edge and node. Betweenness rep-
resents the number of shortest paths passing through an 
edge or node, therefore greater betweenness reflects a 
lack of alternate pathways and likely more importance 
for maintaining connectivity. Betweenness takes into 
account the resistance distance between patches, not just 
whether patches are likely to be connected, when calcu-
lating the shortest paths.

For computational efficiency in calculating pairwise 
patch distances, we combined all potential pika habitat 
patches within 100  m of each other into a single patch 
using the aggregate tool in ArcGIS 10.0. For Euclidean 
distance, we used the “calculate near table” tool in ArcGIS 
10.0 to calculate the distance between polygons at their 
closest point. For resistance distance, we used Circuitscape 
to estimate cumulative resistance between habitat poly-
gons. Due to computational limitations associated with 
estimating cumulative resistance among polygons, we 
reproduced our optimized landscape resistance models at 
20 m resolution and ran the analyses in a series of overlap-
ping tiles of ~10 × 10 km. For pairs of patches for which 
resistance distances were estimated multiple times due to 
overlapping extent, we used the average resistance distance 
as our estimate of resistance distance.

Results

DNA extraction and genotyping

After removing samples that failed to amplify at one 
or more locus, contaminated samples, and multiple sam-
ples from a single individual, we obtained complete 
genotypes for 43–189 individuals per site (Table 2). All 
24 loci were initially retained because none exhibited 
significant linkage disequilibrium within multiple study 
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sites. A number of  loci were out of  Hardy-Weinberg 
equilibrium (HWE) when calculated at the study site 
level, but no loci were consistently out of  HWE when 
calculated at a spatial scale reflecting the gene flow 
threshold (1–4.5  km, see Network models below), sug-
gesting deviations from HWE at the site level were the 
result of  population substructure. We removed loci from 
further analyses if  only a single allele was observed or 
if  it failed to amplify consistently within a population, 
for a total of  17–22 loci per study site (Appendix S3). 
We observed a particularly large amount of  population 
genetic structure within ROMO and subsequent phylo-
genetic analysis revealed the presence of  individuals 
from two distinct mitochondrial lineages (concordant 
with subspecies delineation, Hafner and Smith 2010) 
within the park boundaries (J. A. Castillo et al., unpub-
lished manuscript). Therefore, we partitioned samples 
from ROMO into northern (ROMO N) and southern 
(ROMO S) sampling localities and performed analyses 
on those two data sets separately.

Landscape configuration metrics

Percent cover by land cover classes varied among sites 
(Fig. 2), with amount of potential pika habitat ranging 
from 1.9% (HMAR) to 75.5% (CRMO). Indices of habi-
tat continuity (radius of gyration, patch area, clumpiness 
index, and proximity index) likewise were highest in 
CRMO (Appendix S2), because the landscape was domi-
nated by a single, large lava flow. Mean Euclidean near-
est neighbor distance among patches was greatest in 
CRLA and GRSA, indicating that patches were most 
widely separated in those sites, and lowest in SHWR 
and CRMO (Appendix S2). Land cover class evenness, 
a measure of habitat heterogeneity measured as a modi-
fied Simpson’s evenness index, was lowest in SHWR 
(0.04) and highest in GRTE (0.73, Appendix S2).

Model optimization

Across the eight study sites (nine after partitioning 
ROMO), no two best supported resistance models were 
identical (Table 2). GRTE and SHWR both included 
aspect and land cover, but the contrast (difference in 
resistance values governed by × or standard deviation, 
see Appendix S4 for details) and magnitude of resistance 
(Rmax) for both variables were higher in GRTE. Aspect 
was included in five of nine models and in all models 
the aspect with the lowest resistance was >90° and <270°, 
suggesting south-facing aspects posed more resistance 
to pika dispersal than north-facing aspects.

Elevation was included in three final models: CRMO, 
LAVO, and ROMO N (Table 2). For all three of these 
sites, the optimal elevation closely resembled the mean 
elevation of pika habitat (Table 1). Pika habitat in 

Table 2.  Optimized resistance models for each study site. Value, Mean, and Radius represent the optimum values, x governs the 
shape of the relationship, and Rmax determines the magnitude of resistance. See Appendix S4 for model descriptions.

Site (n)

Aspect Elevation (m)
Topographic 
complexity

Water 
(Rmax) Land cover

Value x Rmax Mean (SD) Rmax Radius x Rmax x Rmax Rmax RS|IBD

CRLA (106) 90° 4 100 – 20 4 500 100 – – 529 0.22
CRMO (53) – 1750 (200) 100 10 4 100 – – – 136 0.63
GRSA (47) – – – – 10 10 10† 0.55
GRTE (189) 270° 10 100 – – – 10 1000 1100† 0.28
HMAR (43) 90° 0.5 2 – – – – – 3 0.06
LAVO (81) – 2250 (300) 2 – 1000 – – 1003 0.36
ROMO N (61) – 3500 (300) 10 11 0.41
ROMO S (132) 45° 10 10 – – – – – 11 0.17
SHWR (47) 0° 1 10 – – – PH = 1 other = 2‡ 12 0.36

†Land cover included lakes as a barrier (Resistance = 10 000). Maximum resistance (Rmax) for land cover is presented for the 
“open” class type and the overall Rmax excludes lakes. 

‡PH = pika habitat. All non-habitat had a resistance of 2. There is no x parameter because this is a binary distinction.

Fig. 2.  Proportion of study area characterized by each land 
cover type for each study site. PH is potential pika habitat.
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CRMO had the least elevational variation and the lowest 
maximum elevation of the study sites (Table 1). 
Topographic complexity was included in two sites: 
CRLA and CRMO (Table 2). For CRLA, areas of great-
est resistance correspond to cliffs and ravines (Castillo 
et  al. 2014). In CRMO, however, there was much less 
dramatic relief and areas of greatest resistance likely 
reflected features such as boundaries of lava tubes or 
areas of greater soil and vegetation development (e.g., 
flow contact zones and kipukas).

Water was included in CRLA and LAVO, with the 
relatively high resistance value in LAVO suggesting 
streams and lakes were significant barriers to gene flow. 
Land cover was included in the final model for GRSA, 
GRTE, and SHWR. In GRTE and GRSA, the optimal 
parameters included high contrast (x  =  10), meaning 
pika habitat, forested, and shrub/grassland cover types 
had relatively low resistance while open areas had high 
resistance (Table 2 and Appendix S4). The optimal land 
cover parameters for SHWR included only pika habitat 
(resistance = 1) and non-pika habitat (resistance = 2).

Resistance values, such as Rmax, are difficult to com-
pare between sites because they reflect the relative resist-
ance of particular variables within that location (Castillo 
et al. 2014); however, we could identify which variables 
are most influential within and across sites. For example, 
both Rmax and RS as compared to the IBD model were 
low for HMAR (3 and 0.06, respectively), suggesting that 
geographic distance alone likely explains much of the 
genetic distance among individuals at that site (Mantel 
r for GenD~IBD = 0.55, P < 0.001). However, even at 
HMAR, the aspect model passed all our rigorous causal 
modeling criteria; therefore, it significantly, although 
weakly, contributed to genetic distance. In contrast, Rmax 
was highest in GRTE and distance alone did not explain 
much of the genetic distance among individuals (Mantel 
r for GenD~IBD = 0.1, P < 0.01), suggesting that land 

cover and aspect strongly influence gene flow. In GRTE, 
open areas (i.e., bare rock without crevices and roads) 
posed much greater resistance to gene flow than pika 
habitat (1000 times greater), forested areas (500 times 
greater), and shrub/grassland (17.5 times greater).

Network models

Gene flow thresholds based on resistance distance 
(GFTRD) used to prune each network ranged from 0.8 
(GRSA) to 24 (GRTE; Table 3, values not directly com-
parable between sites). Gene flow thresholds measured 
as geographic distance (GFTGeoD) ranged from ~1 km 
(GRSA) to 4.5  km (LAVO), with a mean of 2.8  km 
(Table 3). Number of distinct clusters ranged from three 
(CRMO) to 46 (GRTE); but despite the large number 
of clusters in GRTE, the largest cluster contained nearly 
all of the nodes (94%, Table 3 and Fig. 3), suggesting a 
high degree of connectivity overall despite a relatively 
large number of small, isolated clusters. Likewise, the 
largest cluster contained >90% of the nodes in HMAR, 
LAVO, ROMO N, ROMO S, and SHWR (Table 3 and 
Fig. 3). Mean percentage of connected patches (MPCP, 
the mean percentage of the network any single node is 
connected to) ranged from 12% in GRSA to 98% in 
SHWR. However, SHWR and HMAR are not directly 
comparable to the other networks because we did not 
prune the patches based on predicted occupancy. Gene 
flow threshold was predicted by mean patch area and 
MPCP, such that sites with smaller patches and greater 
MPCP had larger gene flow thresholds than sites with 
larger patches or fewer connected patches (R2  =  0.69, 
P = 0.03, df = 2 and 6, Fig. 4).

By visually assessing the network models and quan-
tifying node and edge betweenness, we identified regions 
that might be at risk of becoming increasingly isolated, 
regions that are important for maintaining functional 

Table 3.  Network model metrics for each study site of American pikas, including: gene flow threshold estimates in terms of geo-
graphic distance (GFTGeoD) and resistance distance (GFTRD); total number of patches (nodes) in the network, not including 
pruned patches; number of clusters in the pruned network; percentage of nodes in the largest and second largest clusters in the 
network; and mean percentage of connected patches. 

Percentage of nodes

Site GFTGeoD (m) GFTRD Patches Clusters
Largest 

cluster size
Second-largest 

cluster size
Mean percentage of 
connected patches

CRLA 2500 20 126 26 56 19 34
CRMO 1200 7.5 17 3 88 6 73
GRSA 1000 0.8 109 28 47 10 12
GRTE 4000 24 846 46 94 1 88
HMAR 2250 1.8 190 9 95 2 89
LAVO 4500 2.4 567 10 98 0 96
ROMO N 2500 4.5 403 24 94 1 89
ROMO S 2500 4 514 10 98 0.2 96
SHWR 4250 6 1383 16 99 0.1 98

Note: The largest cluster size reflects the proportion of patches that are connected to each other, while the mean percentage of 
connected patches reflects the average proportion of patches any single patch is connected to.
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connectivity, as well as areas that might be targets for 
management actions to maintain and/or improve con-
nectivity. In CRLA, due to a gap along the northeast 
of the lake, loss of habitat patches along the south and 
southwest of the lake would result in the single large 
cluster of patches surrounding the lake breaking into 
two or more clusters (Fig. 5a). Additionally, improving 

connectivity between the habitat surrounding the lake 
with that to the southwest, for instance through artificial 
talus creation, could lessen the risk of the southwest 
becoming more isolated or extirpated (Appendix S5). In 
GRSA, habitat in the south is not suitable for pikas and 
there are only small habitat patches isolated by areas of 
high resistance in the north, resulting in a well-connected 

Fig. 3.  Distribution of cluster sizes for network models for each site. For all sites, the two largest clusters contained the majority 
of the nodes in the network. The largest cluster for each of GRTE, HAMR, LAVO, ROMO N, ROMO S, and SHWR contained 
more than 90% of the nodes. Nodes pruned from the network were not included in the calculation.

Fig. 4.  Relationship between gene flow threshold, mean patch area, and mean percentage connected patches (MPCP). Sites 
with smaller patches and greater MPCP had larger gene flow thresholds than sites with larger patches or fewer connected patches. 
Gene flow threshold = 990.65 − 0.19 × patch area + 2847.94 × MPCP.
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region in the center of the park and higher fragmentation 
in the north, potentially increasing vulnerability to extir-
pation in that portion of the park (Fig. 5b). Network 
models revealed a relatively high degree of connectivity 
for CRMO, GRTE, LAVO, ROMO N, ROMO S, and 
SHWR (Appendix S5). HMAR was moderate in terms 
of connectivity with relatively few patches and regions 
connected by a few key edges (Appendix S5).

Discussion

Our study reinforces a key conclusion from the few 
studies that have been able to replicate landscape genetic 
analyses across study sites (e.g., Short Bull et al. 2011): 
resistance of particular landscape elements vary across 
space, as do patterns of dispersal, even for a habitat 
specialist such as the American pika. We also establish 
three important new insights regarding the vulnerability 
of this fragmented montane species to climate change. 
Firstly, we determined that functional connectivity for 
American pikas is likely influenced by climate-related 

variables in consistent ways across multiple landscapes, 
but mediated by strong variation in the relative potential 
for heat stress in those landscapes, as previously estab-
lished for pika occupancy on those landscapes (Jeffress 
et al. 2013). Secondly, based on observed gene flow, we 
inferred that the potential for functional connectivity 
remains high in seven of nine study sites on federally 
protected lands across the western United States, 
although one of those sites (HMAR) likely is vulnerable 
due to the small number of occupied patches and isola-
tion at the broader geographic scale. Thirdly, we were 
able to identify specific habitat patches and linkages of 
high importance for maintaining or improving connec-
tivity, demonstrating that future management could be 
targeted to efficiently protect functional connectivity. By 
establishing relationships between functional connectivity 
and variables correlated with climate conditions, this 
study also demonstrates the importance of considering 
functional connectivity when predicting the conse-
quences of climate change on species with fragmented 
distributions.

Fig. 5.  Maps of the landscape resistance model and network graphs for (a) CRLA and (b) GRSA. The network represents 
nodes pruned by 40% occupancy probability and edges pruned by a study site-specific resistance distance threshold (see Table 3 for 
GFTRD estimates for each site) subject to a 4.5 km maximum geographical dispersal distance. Node size is proportional to node 
betweenness and edge color reflects edge betweenness, such that higher betweenness is darker. Betweenness reflects the number of 
paths that go through that node or edge, with high betweenness reflecting a lack of alternate pathways. White circles represent 
pruned (removed) nodes. Node placement on the map corresponds to the patch centroid, therefore, edge length on the map does not 
reflect actual distance between patches. In (a) CRLA, the dotted outline A shows a current gap in patch connectivity, dotted outline 
B shows an area of low resistance where a gap in connectivity might be reconnected through construction of artificial habitat, and 
arrow C points to a region where loss of patch occupancy could result in the network fragmenting into more isolated clusters. 
Figures for all other study sites are presented in Appendix S5.
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In this study, we used a circuit-theoretic approach and 
individual-based genetic distances to model resistance to 
gene flow and identify landscape factors that influence 
pika dispersal within eight different study sites, com-
pared these factors across study sites to identify general 
trends, and then applied our landscape resistance models 
to a patch-based, graph-theoretic analysis of functional 
connectivity within each site. Many studies have 
described functional connectivity through resistance-
based or network-based approaches. However, few have 
combined these two approaches (e.g., Creech et al. 2014), 
despite the many advantages of doing so (Urban et al. 
2009, Moilanen 2011, Manel and Holderegger 2013). 
Landscape resistance surfaces can be derived through a 
variety of methods including species distribution models 
(e.g., Laiola and Tella 2006), animal movement data 
(e.g., Driezen et al. 2007), genetic data (e.g., Shirk et al. 
2010), or some combination of these (e.g., genetic and 
movement data in Epps et al. 2007), each with its benefits 
and limitations (Spear et al. 2010). In turn, these resist-
ance surfaces have been successfully used to identify 
movement corridors, barriers to dispersal, and areas of 
conservation priority. Thus, additional opportunities 
may exist to integrate network analyses into connectivity 
models even when the landscape genetic component is 
not present. One advantage of network-based methods 
is the ability to quantify the contribution of particular 
areas to overall connectivity through centrality metrics, 
as was done with desert bighorn sheep (Ovis canadensis) 
in southern California (Creech et  al. 2014) and gray 
wolves (Canis lupus) in western North America (Carroll 
et al. 2012). In general, such approaches offer the poten-
tial to provide more direct guidance for conservation 
and management than studies that simply develop a 
resistance model (Keller et al. 2015).

Metapopulation persistence is a function of both 
within-patch factors that determine patch occupancy and 
population density, such as climatic conditions and avail-
ability of forage, as well as between-patch factors that 
influence dispersal ability and colonization rates, such as 
distance and landscape barriers (Hanski and Gilpin 
1997). Our study demonstrates that aspect influences 
gene flow and thus between-patch movements for 
American pikas across the majority of our study sites 
(Table 2). Aspect is a temperature-related variable such 
that in the northern hemisphere solar insolation is greater 
at southwest-facing aspects (McCune and Keon 2002). 
Elevation likewise reflects temperature and was included 
in models in an additional three sites, such that all but 
one site, GRSA, included a temperature-related variable. 
We interpret aspect and elevation as indirect and relative 
measures of temperature, but they may also reflect dif-
ferences in vegetation that may contribute to resistance 
to dispersal. However, we considered vegetation classes 
(land cover) in our candidate models, with results sug-
gesting that a relationship between temperature and dis-
persal is the most likely explanation for our results. The 
effects of aspect and elevation identified here establish a 

mechanism by which increasing temperatures could 
reduce dispersal of American pikas, reducing functional 
connectivity and, in turn, decreasing the resilience of 
these metapopulation systems to environmental change. 
Nonetheless, in seven of nine study sites the majority of 
habitat patches likely remain connected based on 
observed gene flow (Table 3), assuming that our estimates 
are still representative of current conditions given the 
potential time lag in changes in genetic structure after a 
perturbation (Landguth et  al. 2010, Spear and Storfer 
2008, Epps and Keyghobadi 2015). This potential con-
nectivity suggests the potential for resilience of pikas in 
these study sites. Ultimately, our study paves the way for 
evaluating how environmental change will interact with 
both structural connectivity (i.e., distribution of suitable 
habitable patches) and functional connectivity (the rela-
tionships described here) for American pikas, and dem-
onstrates a feasible approach for evaluating vulnerability 
of other species for which local metapopulation dynam-
ics could influence persistence.

Replication across study sites

Our study demonstrates that factors contributing to 
resistance to gene flow and therefore functional con-
nectivity can vary spatially. Such variation comes from 
different sources: spatiotemporal variation in environ-
mental conditions leads to local behavioral and genetic 
adaptations (Holt 2003), whereas differences in land-
scape composition and configuration result in different 
factors limiting species’ ecological requirements in dif-
ferent parts of their range (Cushman et al. 2013a, Shirk 
et al. 2014). Understanding such variation will be neces-
sary to effectively manage and conserve species over 
broad scales and diverse landscapes, and can be better 
achieved through metareplicated studies rather than 
comparisons among independent studies that may differ 
in scale, methodologies, and covariates evaluated (Shirk 
et al. 2014). However, this study and associated studies 
(Jeffress et al. 2013 and Schwalm et al. 2016) that rep-
resent metareplicated species distribution modeling for 
American pikas also point to the challenges of metarep-
lication in ecological studies. The need for consistency 
across sites imposes trade-offs: for instance, snow depth, 
duration of snow cover, and timing of snow melt likely 
play an important role in pika dispersal, but fine-scale 
snow data were not available for the majority of our 
study sites and landscape genetic approaches in general 
are limited in their ability to deal with temporal varia-
tion. Likewise, for comparability we used vegetation 
data spanning the whole of the continental United States 
(NLCD 2006) rather than data sets derived from and 
potentially more appropriate for individual sites.

Landscape resistance

The final landscape resistance models differed across 
each of our study sites, perhaps not surprisingly given 
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the dramatic differences in landscape and habitat char-
acteristics among sites, as well as the varying relation-
ships between pika occupancy and environmental 
variables observed within these and other study sites 
(Jeffress et al. 2013). However, replication across diverse 
study sites enabled us to draw some general conclusions 
as to the effect of landscape and climate related variables 
on gene flow for American pikas. Among our nine study 
sites, including ROMO as two separate sites, either aspect 
or elevation was included in all but one and aspect never 
had a south-facing optimum. In the northern hemi-
sphere, southwest-facing slopes have a greater heat load 
than northeast-facing slopes (McCune and Keon 2002). 
Likewise, temperature tends to decrease with increased 
elevation (Körner 2007). Thus, we conclude that exposure 
to relatively high temperatures limits pika dispersal.

GRTE, a cold, wet, high-elevation site, had a west-
facing optimal aspect while the other four sites which 
included aspect in their final model had north- or east-
facing optima. Similarly, Jeffress et  al. (2013) found a 
positive trend with pika occupancy and measures of heat 
stress, suggesting cold stress or other cold related factors 
may restrict pikas in such cold and wet locations as 
GRTE. One potential explanation is that snow cover 
may persist longer on north- and east-facing slopes in 
GRTE than other sites, which could deter pikas either 
as a physical barrier or because there is less vegetation 
readily available for foraging and haying. Elevation was 
included in the final model for CRMO, LAVO, and 
ROMO N. For all three of those study sites, the optimum 
elevation closely matched the distribution of potential 
pika habitat within the study area (Table 1). Therefore, 
the inclusion of elevation in those sites may reflect the 
distribution of pika habitat rather than temperature, as 
was occasionally observed in simulations of gene flow 
for CRLA where the underlying resistance model was 
known (Castillo et al. 2014). However, in CRMO, eleva-
tion was previously determined to be an important pre-
dictor of pika occupancy based on occupancy surveys 
throughout the National Monument (Rodhouse et  al. 
2010), not just the 5 km buffer around our genetic sample 
localities. Jeffress et al. (2013) also found that elevation 
explained some of the observed variation in occupancy 
among all eight national parks investigated. Therefore, 
we cannot exclude elevation as a potential climate-
associated factor in any of those three sites.

Land cover was included in three of nine study areas: 
GRTE, GRSA, and SHWR. In GRTE and GRSA, 
landscape heterogeneity was highest and mean patch 
area and extent were moderate compared to the other 
study areas (Appendix S2). In those two sites, forested 
and shrub/grassland cover types were only slightly more 
resistant to gene flow than pika habitat, while open areas 
such as bare rock and water posed the greatest resist-
ance. In SHWR, the land cover model component con-
sisted only of pika habitat versus non-habitat. SHWR 
was the most homogenous landscape in that 96.5% of 
the landscape was shrub/grassland and vegetation type 

was not a limiting factor; however, SHWR also had the 
most habitat patches (>500 more than the next site, 
GRTE), the second smallest habitat patches on average 
(after HMAR), and the shortest mean nearest neighbor 
distance between patches (Appendix S2). Therefore, in 
SHWR, the inclusion of land cover in the model primar-
ily reflects the influence of pika habitat configuration on 
gene flow rather than other land cover types acting as 
a barrier to gene flow (e.g., open areas in GRTE and 
GRSA, and linear water features in CRLA and LAVO). 
This suggests that (1) in sites where pika habitat was 
more contiguous (i.e., large patch size as well as high 
clumpiness and proximity indices), land cover was not 
a limiting factor for gene flow (e.g., ROMO and 
CRMO); (2) in sites where pika habitat was sparse but 
well distributed (i.e., low clumpiness index) and close in 
proximity (i.e., low nearest neighbor distance), gene flow 
was strongly influenced by habitat configuration; and 
(3) in sites where land cover was only moderately het-
erogeneous (e.g., LAVO and CRLA), either we could 
not detect the effects of land cover due to lack of het-
erogeneity, or other landscape variables such as linear 
water features were more influential. Finally, when there 
were only a few, small, isolated habitat patches in a 
homogenous landscape as in HMAR, geographic 
distance alone was a good predictor of genetic distance. 
Cushman et  al. (2011) demonstrated that landscape 
heterogeneity and configuration affect detectability of 
variables as limiting factors for gene flow. Likewise, a 
study that similarly modeled resistance to gene flow in 
black bears (Ursus americanus) found that features were 
supported in resistance models only when they were 
highly variable (Short Bull et al. 2011), underscoring the 
importance of metareplication in landscape genetics.

Our study provided additional insight on the effects of 
habitat configuration on pika dispersal patterns. Inter
estingly, sites with the most contiguous habitat did not 
have the largest gene flow threshold (Tables 2 and 4). Gene 
flow threshold was highest in LAVO and SHWR, where 
habitat patches were smaller but had a high potential to 
be connected to other patches throughout the study area 
(Fig. 4). Thus, pikas likely disperse out of their natal patch 
more frequently when patches are small and as a result 
gene flow occurs over a greater spatial extent. This pattern 
was first described by Peacock and Smith (1997) within 
manmade habitat patches consisting of mine ore dumps 
in Bodie, California, and is consistent with observed pat-
terns of natal philopatry, a density-dependent competition-
for-resources model of dispersal, and rare long-distance 
dispersal events for pikas (Smith 1974a, Smith and Ivins 
1983, Peacock 1997, Peacock and Smith 1997). Our results 
suggest these patterns are robust to replication across 
multiple study areas and dispersal abilities as influenced 
by landscape resistance.

Additional support for the hypothesis that warming 
temperatures will curtail pika dispersal comes from a 40-
year study of a pika metapopulation in Bodie, California. 
Using data from Bodie, Smith (1974a) demonstrated that 
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pikas can expire when exposed to common surface tem-
peratures (e.g., 28°C) if  they are unable to behaviorally 
thermoregulate (i.e., retreat into talus), and suggested that 
warmer temperatures should limit dispersal ability in this 
species (Smith 1974d). Since that time, the southern half  
of the Bodie metapopulation has collapsed in a pattern 
attributed to climate-mediated reductions in dispersal and 
recolonization (Smith and Nagy 2015). More generally, 
we emphasize that incorporating functional connectivity 
in predicting future species distributions is of critical 
importance in metapopulation systems (Schwalm et  al. 
2016). The resistance to gene flow posed by exposure to 
high temperatures is expected to increase with increased 
climate warming, further limiting pika dispersal ability, 
and potentially resulting in a breakdown of metapopula-
tion dynamics prior to that predicted solely by loss of 
suitable habitat area. However, while our landscape resist-
ance models suggest a relationship between dispersal and 
climate, precise changes to landscape resistance as a result 
of climate change are difficult to predict. Changes in 
ambient temperature, precipitation, and phenology likely 
have complex interactions with each other as well as 
aspect, elevation, and land cover.

Patch network

For species with fragmented distributions, natural or 
otherwise, managing connectivity is an important con-
servation strategy in the face of other threats (Rudnick 
et al. 2012). Identifying key linkages can inform manage-
ment by prioritizing focus on potentially vulnerable 
areas and/or those that may have the greatest overall 
impact (Carroll et  al. 2012, Creech et  al. 2014). Our 
network models allowed us to describe connectedness 
of pika habitat, identify key linkages and habitat 
patches, and identify regions that are likely disconnected 
or at risk of becoming increasingly isolated (Fig. 5, 
Appendix S5). For American pikas, management actions 
may include assisted migration (Wilkening et  al. 2015) 
as well as maintaining, improving, or creating pika habi-
tat (Hobbs et al. 2009). Negative effects of temperature 
may be mediated through behavioral thermoregulation 
(Smith 1974d), but only if enough potential habitat refu-
gia below some exposure threshold are present on the 
landscape and accessible to pikas. The rocky habitat 
used by pikas reduces exposure to extreme temperatures 
as well as predators (Smith and Weston 1990, Holmes 
1991). Therefore, supplementing existing pika habitat 
may be an important conservation strategy in the face 
of climate change. Pikas are known to readily colonize 
artificial rock talus such as those created by road cuts 
and riprap (Manning and Hagar 2010, Nichols 2010). 
Network models such as those developed here can be 
used to test the effects of adding or removing specific 
habitat patches and/or connections and can be used to 
evaluate alternate management strategies (Creech et al. 
2014), as in the case of proposed road construction, trail 
maintenance, or other alterations to the landscape, or 

to explore impacts of climate change. Our findings also 
illustrate the importance of incorporating habitat con-
figuration, landscape resistance (between-patch), and 
occupancy (within-patch) in explaining patterns of 
population connectivity. This is particularly important 
for understanding metapopulation dynamics and risks 
to population extinction for species found in naturally 
fragmented landscapes (Lopez and Pfister 2001, Murphy 
et al. 2010).

Considerations

Combining multiple methodologies (landscape resist-
ance modeling, habitat-specific occupancy modeling, 
and graph-theoretic approaches) replicated on multiple 
landscapes allowed us to systematically describe func-
tional connectivity in American pikas. However, these 
approaches are not without limitations. Estimating 
resistance distance for habitat patches (as opposed to 
point locations) over an entire landscape is computa-
tionally impossible with the current version of 
Circuitscape, and our overlapping tile approach does 
not allow all possible pathways on the landscape to be 
considered in the estimation of cumulative resistance. 
Moreover, Castillo et al. (2014) demonstrated that while 
the model optimization procedure implemented here 
was able to correctly identify the variables contributing 
to landscape resistance, the magnitude of the resistance 
estimates for those variables were less precise. Although 
we did not explicitly test for the effects of the magnitude 
of resistance on the resulting patch network, our net-
work models should be relatively resilient to differences 
in magnitude of resistance estimates because we used 
genetic data to estimate gene flow thresholds in terms 
of resistance distance derived from each resistance 
model. We are confident that the relative magnitudes 
of the resistance values for the different variables are 
robust. However, if our optimization procedure did not 
correctly identify the relative magnitude, then the con-
nectivity network could be affected and this could 
potentially alter conclusions about network connec-
tions. Given current computational limitations of 
Circuitscape, sensitivity analysis for large landscapes 
and metareplicated studies remains a challenge and an 
opportunity for future research.

The availability of appropriate spatial data also posed 
some limitations, as commonly encountered in land-
scape studies. Our potential pika habitat maps included 
anything that appeared talus-like, and therefore, likely 
over-predicted potential habitat in most cases and 
under-predicted habitat in parks with high amounts of 
forested talus such as GRTE. Functional connectivity 
was likely overestimated in SHWR and HMAR in par-
ticular due to limited information on pika distribution. 
Precipitation-related metrics (e.g., rainfall, snow depth 
or duration, duration of the growing season) were not 
included in our landscape resistance models because 
comparable data at the relevant scale to pika dispersal 
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were not available and such metrics that are highly tem-
porally variable (i.e., may vary dramatically from 
one  year to the next) are challenging to address using 
landscape genetics. Precipitation, particularly as snow, 
appears to be important in predicting pika occupancy 
(Jeffress et al. 2013, Schwalm et al. 2016) and persistence 
(Beever et al. 2010, 2011), and it is likely that precipita-
tion influences dispersal as well, as suggested by our 
results in GRTE. Moreover, while we considered aspect 
and elevation as microclimate-related variables, we 
could not explicitly rule out the possibility that those 
variables reflect fine-scale vegetation (as opposed to 
cover class) or some combination of factors. 
Furthermore, combining slope and aspect might have 
provided a more accurate measure of heat load than 
aspect alone (McCune and Keon 2002), although that 
approach could have confounded resistance estimates 
based on topography. Despite these limitations, these 
network models reflect a more realistic representation 
of functional connectivity for American pikas than pre-
viously considered, and this method of inferring maxi-
mum effective dispersal based on landscape resistance 
could improve estimates of functional connectivity 
within other metapopulation systems.

Conclusions

This study represents the most comprehensive analysis 
of functional connectivity for American pikas to date 
and has implications for other species found in similar 
habitats (e.g., marmots and woodrats), as well as those 
characterized by metapopulation dynamics or similarly 
restricted to fragmented habitats in other systems. 
Through metareplication across landscapes representing 
much of the environmental variation experienced by 
pikas, we found that connectivity in American pikas is 
likely influenced by climate-related variables and habitat 
configuration, and temperature sensitivity may limit dis-
persal in pikas. Restricting our investigation to any one 
study site would not have revealed these insights. 
Researchers should therefore consider the potential ben-
efits and limitations of replicating landscape genetic 
studies across multiple study areas, balancing the needs 
of better understanding broadscale species–habitat rela-
tionships and how to best inform specific management 
actions within a particular management area. We also 
concluded that potential for functional connectivity is 
still high for pika populations on most of the landscapes 
in this study. However, we likewise established that 
determining whether those landscapes will remain con-
nected as climate changes will necessitate considering 
both changes in patch occupancy and changes in func-
tional connectivity. Small metapopulations of American 
pika may be especially vulnerable to collapse in a warm-
ing climate (Smith and Nagy 2015), and our results more 
broadly imply that reduction in functional connectivity 
may lead to the collapse of  even larger metapopula-
tions before habitat patches are predicted to become 

unsuitable, as described by Schwalm et  al. (2016). 
Populations of American pikas as well as other climate-
sensitive montane species are most at risk in low eleva-
tion sites with relatively few, isolated habitat patches 
(Millar et al. 2014a), such as HMAR. Many Great Basin 
populations follow this description, and, in fact, most 
local extinctions of American pikas to date have 
occurred in that region (Beever et al. 2003, 2010, 2011, 
Wilkening et  al. 2011). Conservation and management 
of this and other species should focus efforts on areas 
that have potential for maintaining functional connectiv-
ity at multiple scales, and combining landscape genetics, 
graph networks, and ecological niche models of future 
occupancy can be a powerful approach to accomplish 
this goal.
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